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Abstract

The low reactivity of natural gas leads to a sudden increase of
carbon monoxide (CO) and unburned hydrocarbons (UHC)
emissions below a certain load level, which limits the part load
operation range of current utility gas turbines in combined cycle
power plants (CCPP). The feasibility of catalytic autothermal
syngas generation directly upstream of gas turbine burners to
improve burn-out at low flame temperatures is studied in this
paper. The adiabatic reformer is supplied with a mixture of
natural gas, air and water and generates syngas with high
reactivity, which results in better low-temperature combustion
performance. Substitution of part of the natural gas by syngas
provides the opportunity of lowering overall equivalence ratio in
the combustion chamber and of extending the operation range
towards lower minimum power output without violating emis-
sion limits. A generic gas turbine with a syngas generator is
modelled by analytic equations to identify the possible operating
window of a fuel processor constrained by pressure loss, low
and high temperature limits and carbon formation. A kinetic
study shows good conversion of methane to syngas with a high
hydrogen share. A calculation of the one-dimensional laminar
burning velocity of mixtures of syngas and methane and the
assessment of the corresponding Damköhler number show the
potential for lowering the minimum equivalence ratio with full
burn-out by fuel processing. The study shows that such a fuel
processor has a possible operating range despite the before
mentioned constraints and it has potential to reduce the lowest
possible load of gas turbines in terms of thermal power by 20%.

Introduction

Conventional power plants must compensate fluctuations in
the power supply because of an increasing amount of volatile
renewable energy sources such as wind and solar power. This
demands more flexible conventional power plants. Gas turbine
power plants adjust total power output quickly but CO and
UHC emissions limit the part load regime to about 60% of the
full load. This study focuses on the operational range extension
of gas turbines in a combined cycle power plant to lower loads.
The basic idea to accomplish this goal is to increase the reac-
tivity of the fuel and to reduce the possible overall equivalence
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ratio in the combustion chamber without risking increased emissions, flame out or combustion insta-
bilities. The desired increase of reactivity is achieved by converting methane to hydrogen.

There are mainly three different approaches to convert methane to syngas with high hydrogen content:
partial oxidation (POX), steam reforming and autothermal reforming (Reyes et al., 2003).

POX is a combustion process in the very rich regime. Thermodynamic equilibrium is shifted towards
CO and hydrogen due to the deficiency of oxidizer. Usually a catalyst is used to increase the reactivity
of the mixture. Regarding conversion to hydrogen and residence time the studies of Dissanayake et al.
(1991) and Heitnes et al. (1995) show that POX with an affordable nickel catalyst shows promising
results. However, the produced syngas has a very high temperature, which impedes premixing due to
auto-ignition, and thus a clean burn-out in the combustion stage. Cooling the syngas to reach a
temperature which allows for premixing can only be achieved with a significant pressure loss that
incorporates a heat exchanger.

The second route to produce syngas is steam reforming (Liu, 2006). In steam reforming, natural gas is
mixed with water vapour. Water and natural gas react mainly to carbon dioxide and hydrogen. Usually
steam reforming is performed with a high excess of vapour to avoid coking of the nickel catalyst and to
increase the hydrogen yield. The reaction is highly endothermic ( H kJ mol206R

o 1Δ = − ). An external
heat supply decreases the efficiency dramatically. Thus, a steam reformer cannot be used as fuel processor
in this context.

The third process to produce syngas is autothermal reforming. An autothermal reformer (ATR) can be
seen as a combination of the two aforementioned processes (Song et al., 2009). Natural gas is mixed
with an oxidizer and water vapour and reacts on the surface of a catalyst. The exothermic oxidation
reactions provide the necessary heat supply for the endothermic steam reforming reaction. By adjusting
the ratios of oxidizer to carbon bound in methane (Air/C) and water to carbon (H2O/C), it is possible
to control the temperature of the process and the products. The ATR is analysed in this study, because
the moderate syngas temperature (below 1,000 K) allows for premixing, no external heat supply is
needed and the residence time for the conversion is reasonable.

Fuel reforming prior to combustion has been particularly in the focus of researchers because of its
potential to CO2 sequestration. The high partial pressure of CO2 in the syngas provides the potential for
membrane or chemical sequestration (Lozza and Chiesa, 2000; Stuttaford and Oumejoud, 2008).
Several studies on fuel reforming for flame stabilization have been published in the past: Bozza et al.
investigate the use of the enthalpy of the exhaust gas to reform the fuel (Bozza et al., 2001, 2002). In
CCPPs, this enthalpy flow generates steam for the steam turbine. Extraction of large amounts of exhaust
gas enthalpy has a negative influence on overall plant efficiency. Ren et al. (2001) discuss the possibility
of exhaust gas recirculation, which has an equally negative effect on the Heat Recovery Steam Generator
(HRSG) performance. A similar process is analysed by Gomez Maqueo et al. (2016), but to enhance
reactivity of biogas. All the aforementioned processes are designed for a stand-alone gas turbine process
and cannot be implemented in CCPPs. Karim et al. deal with a catalytic rich quench lean process (Karim
et al., 2002; Pfefferle, 2002; Smith et al., 2003). A rich fuel air mixture is ignited catalytically. The
reactor is cooled by bypassing air. For an effective cooling, the areas must be sufficiently large. This in
turn increases the pressure loss. The authors do not mention how the pressure loss of the rich catalytic
stage is thought to be compensated. In the present study, fuel reforming prior to combustion suitable for
the integration in CCPP is analysed with respect to the general feasibility of the concept and the potential
improvement of the turn-down ratio.

The paper is organized in the following manner. Firstly, the syngas generator is described in detail.
In the main section, models for all components of the syngas generator and the gas turbine based on
simple equations are presented. The components include an ejector, a catalyst bed, the syngas
injection, the compressor, the combustion chamber, the turbine, and the HRSG. Thereafter the
results of the model are discussed. Then a kinetic study shows the conversion of natural gas to
syngas for the fuel processor. This is followed by the calculation of the laminar flame speed and the
Damköhler number of mixtures of methane and syngas to assess the possible stability gain of the gas
turbine in the part load regime.
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Integration of the syngas generator for part load operation in a combined
cycle power plant

Figure 1 shows a CCPP process scheme with the catalytic reactor driven by an ejector. In full load
operation of the gas turbine, the compressed air is entirely directed to the combustion chamber, where it
is mixed and reacts with NG. The resulting hot gas drives the turbine, which itself drives the compressor
and a generator (not shown). The ejector and the fuel processor are placed in a parallel flow configuration
and are only used in the part load regime. In order to reduce power below full load the fuel mass flow is
reduced as usual. This measure is limited by the lean blow out (LBO) limit of the fuel. Further power
reduction is achieved by simultaneously throttling the compressor air intake and the fuel mass flow, at a
constant combustion temperature. With state of the art compressors intake can be reduced to ~70% of
the full load air mass flow. At this point, LBO limits the power reduction again. This is where the fuel
processor is activated. Steam generated by the HRSG is used to boost a small fraction of the compressed
air to higher pressure. This air is directed through the fuel processor. Natural gas is mixed with this air
and water vapour flow. This mixture is then converted to syngas at the catalyst. Finally, the syngas is
injected into the combustion chamber in parallel with the remaining natural gas. The syngas and natural
gas mixture has a higher reactivity than natural gas alone and is thus suitable to combust at a lower
equivalence ratio. The lower equivalence ratio results for a constant air mass flow in less fuel and thus the
total power output can be reduced.

The operation of a fuel reformer directly upstream of the combustor leads to some challenges regarding
the system integration. One of the challenges is the pressure loss this bypass incorporates. The air exiting
the compressor is split into two flows: one for the catalytic reactor, which produces syngas to be injected
into the combustion chamber, and the second that is led directly into the burners of the combustor. For
this reason the driving pressure for the syngas generator must be generated. In order to achieve reforming
in a compact device a catalyst must be employed. Literature on syngas generation indicates that nickel
catalysts are most favourable for reforming because nickel exhibits high activity at low catalyst cost.
Problematic is the high light-off temperature of the nickel catalyst. Light-off temperature of nickel
catalysts are at least 700 K (van Looij and Geus, 1998). If the temperature of the mixture of compressed
air, steam and natural gas is too low for a nickel catalyst to achieve ignition, a second catalyst with a lower
light-off temperature must be employed. For the ignition, a platinum/palladium catalyst can be imple-
mented. The operation of the catalytic fuel processor is accompanied by a significant pressure loss. By the
integration of an ejector upstream of the reactor, this pressure loss can be compensated. The ejector is
driven by the high-pressure steam extracted from the HRSG. In full load operation this steam has
approximately a temperature of 800 K and a pressure of 120 bar (Dolezal, 2001). The catalysts perform

Figure 1. Process scheme of gas turbine equipped with the autothermal on-board fuel processor.

Baumgärtner and Sattelmayer | Autothermal on board syngas generation https://journal.gpps.global/a/D0HPA5/

J. Glob. Power Propuls. Soc. | 2017, 1: 55–70 | https://doi.org/10.22261/D0HPA5 57

https://journal.gpps.global/a/D0HPA5/
https://doi.org/10.22261/D0HPA5


well within a certain temperature range. Below this range the activity is lost — above it the catalyst is
damaged. Therefore, syngas temperature is a crucial parameter for the design of the syngas generator.

In the following, a detailed model is introduced which allows to identify the limits of the operating
range of the catalytic reactor as function of the mass flow of steam and air related to the natural gas
flow at inlet of the reactor, as these two ratios are the only free design parameters.

Model of the syngas generator integrated in the gas turbine cycle

The compressor, the ejector, the catalyst bed, the combustion chamber, the turbine, and the HRSG
are modelled focussing on the necessary information to evaluate the feasibility of the syngas generator
concept. The model is based mostly on analytic equations. For some parameters, e.g. the adiabatic
efficiency of the compressor or the steam data, look-up tables are used. Details of the modelling for
each component are given below. After the description of the components, the solution algorithm and
the results are discussed. The model can also be used to investigate the sensitivity of the process to
certain input variables. For this reason, a sensitivity analysis is additionally presented.

Syngas generator

The syngas generator comprises the ejector and the catalyst bed.

Ejector pump

An ejector pump comprises a nozzle for the driving fluid, an inlet for the driven fluid, a mixing zone, and
a diffuser (see Figure 2). Details on the operation and performance of ejector pumps can be found in
(Wutz et al., 2000). In the present case, a Laval nozzle is used to attain supersonic conditions. In the
nozzle, kinetic energy of the steam is generated with very high efficiency. The driving jet exits the nozzle
and entrains the air. The mixing process is nearly isobaric, but involves some friction losses. In the
diffuser downstream of the mixing zone the kinetic energy is reduced continuously associated with a
pressure gain. The mixture pressure at the exit of the ejector pump is between the pressures of the driven
and the driving fluid.

For the isobaric mixing zone (Power, 1994) the momentum balance reads as follows:
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Here hexp NΔ η is the enthalpy difference of the
driving fluid, which is converted to kinetic
energy in the nozzle, ha inΔ η is the corresponding
enthalpy difference for the air converted in the
inlet, and hcompΔ is the enthalpy difference the
mixture has to undergo to achieve the necessary
pressure level. The efficiencies and the friction
coefficient are calibrated to meet experimental
data presented in (Power, 1994). Resulting val-
ues are shown in the Appendix A.

The unknown enthalpy differences are treated as
follows. The enthalpy difference haΔ takes different values for each operating point. The enthalpy
difference and inlet velocity depend on each other. An inlet cross section is defined to give the optimal
inlet velocity and thus the optimal enthalpy difference for a reformed natural gas mass flow of 50%. As
the inlet air velocity ca is rather small, the change of state can be regarded incompressible. Thus, the
definition of an inlet cross-section for a certain operating condition specifies the air inlet velocity and the
corresponding enthalpy difference for other operating conditions as well. Two states of the steam are
relevant for the definition of hexpΔ . Firstly the state of the steam provided by the HRSG and secondly the
state at the inlet plane of the mixing cross-section. The former depends on the load of the gas turbine
and is described in detail below. For the latter, it is assumed that the nozzle is designed in such a way that
for 50%-reformed-fuel-operation the steam pressure in the exit plane of the nozzle reaches exactly the
same pressure as that of the air prior to mixing. The hcompΔ accounts for the difference in enthalpy in the
diffuser. At the exit plane of the mixing zone, the gases are assumed to be perfectly mixed. The kinetic
energy of this mixture is converted to static pressure in the diffuser. The mixed state is defined by
adiabatic, isobaric mixing. The pressure at the end of the diffuser must match the sum of the compressor
outlet pressure and the pressure loss induced by the catalytic reactor and the fuel injector.

Catalyst bed

For the catalyst bed, the temperature of the products and the pressure loss are of importance. The
temperature of the products must be within a certain range to avoid overheating and damaging of the
catalyst and to maintain reactivity. This range is assumed to be 900K = Tmin < Tsyngas < Tmax = 1,123 K
based on data from literature. The thermodynamic equilibrium based on minimization of the free Gibbs
energy is calculated for the mixture of methane, air, and water vapour in the reformer. The species
involved in these calculations are CH4, CO2, CO, solid carbon, H2O, H2, O2, and N2.

The pressure loss of a catalyst consisting of pellets can be calculated according to the Ergun equation
(Fromment and Bischoff, 1979):

A
c

d
B

c
d

 
p
L

(1 ) (1 )

p p

2

3 2 3

2Δ
Δ

η ρ
=

−Ψ
Ψ

+
−Ψ
Ψ

(4)

For the employed nickel catalyst the Sauter diameter dp is assumed to be 6.8 mm. This value
corresponds to commercial 10-hole ring catalysts that are typically used in reforming.

The coefficients A and B in Equation 4 are fitted to pressure loss measurements with cold-air per-
formed on a generic tube reformer filled with commercial 10-hole rings. The Reynold’s number Re is
defined with the cold-air properties, the superficial velocity, and the Sauter diameter as characteristic
length scale. The measurements and the corresponding fit are presented in Figure 3. For the reacting
case, the fluid parameters such as density and viscosity change over the length of the reactor. In this
case, the reactor is discretized into ten segments and the fluid parameters are adjusted to the change in
composition and temperature. It is further assumed that in the reformer the aforementioned equili-
brium is reached at the outlet and that the composition changes according to an exponential decay

Figure 2. Scheme of an ejector pump.
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towards the equilibrium composition. This cor-
responds well to the simulated change in compo-
sition that is described later in this study. The
residence time is assumed 0.2 s. The size of such a
reactor is given in Appendix A.

Syngas injection and further losses

As already mentioned, the syngas injection is
another major source of pressure loss. As the pres-
sure loss is a linear function of the dynamic pressure
according to Equation 5, the velocity has a crucial
influence on the pressure loss. For the injection
velocity of the syngas, cinj = 100 m·s-1 is assumed.

apinj
c
2

2
Δ ζ= ρ (5)

The constant a takes different values depending on the case for which the pressure loss is calculated. Total
pressure loss for the piping and the injection reads:

( )p (Re) 1inj
l
d

c

2

syn inj
2

Δ ζ= +
ρ

(6)

The pressure loss for the injection is of order of 2.0 × 104 Pa.

Gas turbine and heat recovery steam generator

In the following the models for the compressor, the combustion chamber, the turbine and the HRSG
are presented in detail. A generic gas turbine and HRSG with the parameters as shown in the
Appendix A are assumed.

Compressor

A polytropic change of state is assumed for the compressor; see Equation 7. When the syngas generator
is in operation in the part load regime, the inlet guide vanes (IGV) are assumed to be closed thus
reducing the total air intake to 70% of the full load operation. Closing the IGV reduces the polytropic
efficiency of the compressor. With 70% of the nominal air intake this efficiency is ηpol,c = 0.8
according to (Cline et al., 1985). Data that is more recent has not been found but the compressor’s
efficiency has only a minor influence on the results of this analysis. The compressor outlet pressure is
assumed to decrease linearly with the air mass flow.

The polytropic exponent for the compressor is calculated as follows: ( )n ( 1)pol c pol c, ,

1
η κ η κ κ= − −

−
.

The isentropic exponent is assumed to be κ = 1.4.
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⎠
⎟⎟

−
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Combustion chamber

Here the calculation of the hot-gas temperature is of interest. An energy balance is solved. A total
equivalence ratio of 0.33 is assumed for the model of the combustion chamber. This can be seen as a
goal to be reached by the syngas injection. The adiabatic flame temperature TCC is calculated based on
total fuel consumption. As combustion efficiencies are above 98%, this is a reasonable assumption.
National Aeronautics and Space Administration (NASA) polynomials are used for all species involved.

Figure 3. Pressure loss of the catalyst bed.
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Turbine

A polytropic change of state is also assumed for the turbine; cf. Equation 8. As the influence of the
polytropic efficiency is of minor importance for the syngas generator, a constant value of ηpol,turb = 0.95
(Lechner and Seume, 2010) is assumed.
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−
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The polytropic exponent for the turbine is calculated as follows: n  ( ( 1))pol turb, 
1η= κ κ− κ− − . The hot

gas consists independently of the syngas share in the fuel mostly of nitrogen. Thus, the value of the
isentropic exponent is assumed to be 1.35κ = .

Heat recovery steam generator

The state of the steam, i.e. its pressure and temperature, is of importance for the ejector calculation.
Other parts of the bottoming cycle are not part of the model. Constant and sliding pressure operation
are two established control strategies for the HRSG (Kehlhofer, 1997). Constant pressure operation is
usually implemented in smaller power plants only. For this reason the sliding pressure operation is
assumed in the current study. The reduction of the exhaust gas enthalpy at part load leads to lower
steam production. As the steam turbine rotates at the same speed as in full load, it has the same
volumetric intake and steam pressure upstream of the steam turbine drops accordingly.

A temperature difference of about 40 K needs to be employed to assure sufficiently efficient heat transfer
from the exhaust gas to the steam. As lower temperature differences are state of the art, this can be
regarded a worst case scenario. In the model the steam temperature is calculated from Ts = Teg–40 K.
The enthalpy balance for the HRSG together with the assumption that the volume flow at the steam
turbine is constant leads to steam density in the last step:

m
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The steam pressure is taken from steam tables with temperature and density as input variables,
ps = f(Ts, ρs). As for the enthalpy difference Δhs of the steam generated in the HRSG, its final
state has to be known a priori, the pressure has to be calculated iteratively.

Solution procedure

The process simulation starts with the selection of the operating point of interest. Then the pressure loss
of the catalysts and the fuel injector, the pressure gain in the pump, the syngas temperature, and the
solid carbon formation are calculated. Operation is only feasible within the constrained range.

To perform the calculation, the ratios of steam to fuel mass flow and air to fuel mass flow for the
syngas generator are assumed. The reformed fuel fraction is, as an upper limit, always 100%. As many
of the variables depend on each other, a direct solution is not possible. Instead, an iterative solution
strategy is employed. The temperature of the steam generated by the HRSG influences the tem-
perature of the syngas and this again has an influence on the hot-gas temperature. Furthermore, the
hot-gas temperature affects the temperature of the steam. The pressure loss of the catalyst bed is not
known a priori but it influences the required pressure level downstream of the ejector, which in turn
has again an effect on the catalytic reactor. The solution scheme calculates all variables until the steam
temperature change becomes smaller than 1 K and the pressure loss changes less than 100 Pa.

Essential for the evaluation of the feasibility of the process is whether the ejector can compensate the
pressure loss that the catalytic reactor induces. The solution scheme calculates the state of the air and the
steam upstream and downstream of the fuel processor. The necessary steam-to-air mass flow ratio to
achieve the determined pressure rise is calculated with Equation 3. The necessary flows are compared to

Baumgärtner and Sattelmayer | Autothermal on board syngas generation https://journal.gpps.global/a/D0HPA5/

J. Glob. Power Propuls. Soc. | 2017, 1: 55–70 | https://doi.org/10.22261/D0HPA5 61

https://journal.gpps.global/a/D0HPA5/
https://doi.org/10.22261/D0HPA5


the flows of the operating point that was calculated.
If the necessary ratio exceeds the one for the cal-
culated operating point, operation with these flows
is possible according to the pressure loss constraint.

Results of the process model

The four major constraints governing the opera-
tional window are illustrated in Figure 4. The
operational window covers a stripe from Air/C ≃
2.0 and H2O/C ≃ 1.75 to Air/C ≃ 2.75 and H2O/
C ≃ 3. If the amount of air is increased too far,
overheating occurs (red hatched area). By increas-
ing the amount of water, deactivation becomes a
problem (blue hatched area). Carbon formation
seems to be of minor importance as the black area
indicates. Only for mixtures with no or little water
solid carbon is formed. In the black hatched area in
Figure 4 the equilibrium carbon share is greater
than 1 ppm. The green hatched area cannot be
reached, because the ejector cannot generate the
pressure gain required for operating the syngas
generator. With an increasing amount of air, the
load for the ejector also increases, as does the total
mass flow through the syngas generator. Thus, the
driving pressure rises and the ejector needs more
water vapour to pump the air. Above a ratio of
H2O/C ≃ 2.2 the pressure gain in the ejector is
sufficient for all air mass flows considered.

In addition, a sensitivity analysis has been per-
formed. Several design parameters of the syngas
generator affect either the pressure loss or the
pressure gain in the ejector. Figure 5 shows the five
most significant parameters governing steam con-
sumption. Increased steam consumption moves
the pressure boundary in Figure 4 (green) upwards
and thus reduces the operational window. Due to
the correlation of the effective velocity caused by
the length-to-diameter ratio of the catalytic reactor
L/D, it has a major influence on the pressure loss
of the reformer. The mass flow of fuel to be
reformed and the injection velocity of the syngas
have significantly weaker effects. Increasing the
fuel mass flow by 10% increases steam con-

sumption by only 5%. The most influential parameters are the ejector nozzle and diffuser efficiencies.
The most important outcome of the sensitivity study is the finding that proper ejector design is crucial
to obtain the highest possible efficiencies and a wide operability range.

Kinetic study of the catalytic reactor

With the model of the catalytic reactor based on detailed chemistry the efficiency of syngas generation
is calculated. Achieving a high hydrogen concentration in the produced syngas is essential because it

Figure 4. Operating Window: Blue: Low temper-

ature deactivation; Red: High temperature deac-

tivation; Black: Carbon formation; Green: Pressure

constraint.

Figure 5. Sensitivity analysis: L/D: Length-to-width

of the catalytic reactor; mE: Mass flow of fuel to be

reformed; ηN: Nozzle efficiency; ηDif: Diffuser

efficiency; cinj: Velocity of the syngas injection;

Blue: 10% positive change; Red 10% negative

change of the independent variable.
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governs the syngas reactivity. An important optimisation criterion is the minimisation of the residence
time because it influences the size of the catalytic reactor and its pressure loss.

Description of the kinetic model

The fuel processor is calculated with two separate plug flow reactors (PFR), which are in series. Axial
heat transfer is included in the model to account for the high thermal conductivity of the catalyst
material. For the catalysts, surface reactions are accounted for and reactions in the gas phase are
neglected. As temperature is relatively low, gas phase reactions are improbable. The kinetic model
proposed by Quiceno et al. (2006) is used for the first PFR, which simulates the noble metal catalyst
used for ignition. It includes 10 surface species, 6 gas phase species and 36 surface reactions. This
mechanism has been optimised to fit experimental data of the catalytic POX of methane without high
water concentrations at the inlet. The mechanism was validated in the pressure range up to 10 bar with
good results (Quiceno et al., 2006). A validated mechanism for pressures up to 20 bar for catalytic
POX does not exist, to the best of the author’s knowledge. Inert nitrogen is added to the gas phase
mechanism by the authors of this study because this species was not part of the original mechanism.
The reaction scheme for the nickel catalyst is adopted from Maier et al. (2011). It has been designed
for steam reforming on nickel catalysts. The mechanism involves 13 surface species, 8 gas phase
species, and 43 surface reactions.

Results of the kinetic study

For the reactor analysis in the current context, Air/C = 2.5 mol·mol-1 and H2O/C = 2.5 mol·mol-1 has
been selected, which represents an operating point inside the operating window identified above. The
other settings such as size of the fuel reformer, mass flow to be reformed and so forth are the same as
those modelled before, see Appendix A. A heat loss of 10% of the converted higher heating value is
introduced to account for the heat losses of the syngas generator. This value fits best to measurements
on a syngas generator test rig, which will be published subsequently. The results of the calculation at
20 bar are depicted in Figure 6 and in Figure 7.

In the investigated case, combustible gas has a residence time of 20 ms in the ignition catalyst. After
ignition, oxygen and methane are consumed while water and carbon dioxide are produced. Only very
little hydrogen and CO are created. A significant temperature rise from 650 K to 1,100 K is calculated.
Reforming occurs in the second catalyst stage. Here mainly water and methane are consumed to
produce hydrogen and carbon dioxide. The vast amount of water in the mixture suppresses the
production of CO via the shift reaction. As the reactions in the reforming stage are endothermic the

Figure 6. Calculated species mole fractions: 0–

20 ms noble catalyst for ignition, 20–225 ms

reforming catalyst.

Figure 7. Calculated gas temperature: 0–20 ms

noble metal catalyst for ignition, 20–225 ms

reforming catalyst.
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temperature drops to 910 K. The sudden increase
in temperature at the entrance of the second stage
does not happen in reality. Apparently, the
reaction mechanism is not designed to cope with
oxygen in the reactants. The activity is over-
estimated. However the calculated methane
conversion of 80% within the given residence
time is in line with data from literature (Mosayebi
et al., 2012). The final composition of the mix-
ture is approx. 30%-vol water, 30%-vol hydro-
gen, 30%-vol nitrogen, 10%-vol carbon dioxide,
and a few percent of methane. The syngas con-
tains hardly any oxygen or CO. For other ratios
of water and air to fuel inside the operating
window, the general trends for the syngas com-
position and temperature are similar.

Calculation of the laminar burning
velocity

The one-dimensional laminar burning velocity of
the syngas and methane mixture has been calcu-
lated to evaluate the effect of syngas addition on
combustion stability. The calculation was per-
formed with the GRI3.0 mechanism (Smith
et al., 2014), which has been designed for
methane. Since it incorporates hydrogen and CO
mechanisms, it can also be applied to syngas and
syngas/methane mixtures. In the subsequently
presented cases, the air temperature is 673 K, the
methane is assumed to have a temperature of
300 K, and the syngas temperature is 910 K,
according to the results of the kinetic model
presented in the last section. The total pressure is
held constant at 20 bar.

Two different sets of calculations were performed.
In the first case the laminar burning velocities for
mixtures with an increasing share of syngas at
constant equivalence ratio was calculated. The
syngas share corresponds to the amount of natural
gas that is reformed. A non-stretched free flame
was implemented to first calculate the methane
flame with different equivalence ratios. Then the

share of syngas in the fuel was increased at constant equivalence ratio and the laminar burning velocity
of the mixture was determined. The results of this calculation are shown in Figure 8. With an
increasing syngas share, the laminar burning velocities are increasing. For the ϕ = 0.5-case pure
methane has a laminar burning velocity of 7.6 cm·s-1, which is increased by a substitution with 50%
syngas to 10 cm·s-1, an increase of 32%.

In the second case, the goal of the computations was to find the equivalence ratio of syngas/methane
mixtures, which exhibits the same Damköhler number DaB as that of methane. Correlations for the

LBO equivalence ratio based on a Damköhler number, defined as DaB
d
U

s d
U

s
l

res

chem b

l

b

l

l

2
= = =

τ
τ α

are a

Figure 8. Unstretched one-dimensional laminar

burning velocity of syngas and methane mix-

tures calculated with the GRI3.0 mechanism

(Smith et al., 2014).

Figure 9. Solid lines: Equivalence ratio of syngas

and methane mixture with the same Damköhler

number as pure methane. Dashed lines: Equiv-

alence ratio of syngas and methane mixture with

the same Damköhler number as pure methane

corrected with offset for the preferential diffusion

effect.

Baumgärtner and Sattelmayer | Autothermal on board syngas generation https://journal.gpps.global/a/D0HPA5/

J. Glob. Power Propuls. Soc. | 2017, 1: 55–70 | https://doi.org/10.22261/D0HPA5 64

https://journal.gpps.global/a/D0HPA5/
https://doi.org/10.22261/D0HPA5


common approach (Shanbhogue et al., 2009). Zhang et al. (2007) apply such a correlation to LBO
data for a swirl combustor with varying CO, H2 and CH4 content as fuel. The correlation fits well to
the data for low H2 content in the fuel. To obtain a better fit for low and high H2 content data the
authors introduce a term which accounts for the preferential diffusion effect of H2. They argue that

due to this diffusion effect the local equivalence ratio changes. This change is termed
D
D

Cln F

O
Δφ = .

Zhang et al. propose a value of 0.1 for the constant C. This value is adopted. The diffusivities of the
fuel and oxidizer are calculated as in Zhang et al. (2007). The characteristic length scale d is assumed

constant. The velocity of the burned mixture U Ub o
T
T
b

0
= scales with the ratio of the adiabatic flame

temperature of the syngas and methane mixture compared to the pure methane case.

As can be seen in Figure 9, the equivalence ratio at constant DaB is reduced significantly with rising
syngas concentration in the fuel. The dashed lines correspond to the equivalence ratio corrected with
the term for the preferential diffusion effect. Comparing the pure methane ϕ = 0.5-case with an
injection of 100% syngas, the same DaB is reached with a corrected equivalence ratio of ϕ = 0.33.
According to the considered generic gas turbine, the total natural gas mass flow for part load is
11.9 kg/s, assuming a reduced air intake to 70% of full load intake and an equivalence ratio ϕCH4 =
0.5. On the other hand, the total natural gas mass flow that exhibits after conversion to syngas the
same Damköhler number is only 9.4 kg/s. This corresponds to a decrease in thermal power of 20%.
The detailed derivation is shown in Appendix B.

Conclusion

The goal of the presented study was the analysis of the feasibility of an autothermal on-board
syngas generator for improvement of the turn-down ratio of gas turbine combustors in unstaged
operation.

Modelling reveals that an ejector pump driven by the steam produced in the HRSG can overcome
the pressure loss induced by the catalytic reactor and the subsequent syngas injector in the burner.
The temperature of the catalyst bed can be controlled by adjusting the Air/C and the Water/C
ratios. An increasing amount of water reduces the temperature while more air results in rising
temperature. Overheating and deactivation of the catalyst can be avoided by adjusting the mixture
entering the catalyst bed. Carbon formation has been identified to be of minor threat for the
catalyst. The analytic model shows that a wide operating window for the syngas generator exists.

Employing a sensitivity analysis, the length-to-width ratio of the fuel processor, the efficiency of the
ejector nozzle, and the efficiency of the ejector diffuser have been identified as important design
parameters. These parameters have a great influence on the pressure loss of the catalyst or the pressure
rise in the ejector, respectively.

PFR type calculation with detailed chemistry reveals the general behaviour of the fuel processor. The
resulting syngas has a hydrogen volume fraction of 30% and a temperature of 910 K. Calculations of
the laminar burning velocity show a significant increase when substituting methane by syngas. This is
also reflected by the calculation of the equivalence ratio for constant Damköhler numbers. A decrease
of up to 20% of thermal power seems to be possible by reforming the fuel without increase of flame
length or sudden blow-out.

The present study shows the feasibility of ATR for on-board syngas generation. The higher reactivity
of syngas allows to improve the turn down ratio of gas turbine combustors in unstaged operation.
Experimental data are only used to quantify the constants in Equation 4 and the heat loss in the
kinetic model. As further steps, the conversion predicted by the kinetic model employed in the
present study will be validated by experiments with a lab scale syngas generator, and the predictions
of the operation range extension will be verified using the combination of the syngas generator and a
premix burner equipped with injectors for syngas/methane mixtures.
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Nomenclature

Acronyms

ATR Autothermal Reforming

CCPP Combined Cycle Power Plant

IGV Inlet Guide Vanes

LBO Lean Blow Out

HRSG Heat Recovery Steam Generator

NG Natural Gas

PFR Plug Flow Reactor

POX Partial Oxidation

Latin Characters

a [-] Pressure-loss case coefficient

c [m s-1] Velocity

D [m2 s-1] Diffusivity

Da [-] Damköhler number

d [m] Diameter

dp [m] Sauter diameter

F [N] Force

h [kJ kg-1] Enthalpy

l [m] Length

ṁ [kg s-1] Mass flow

p [Pa] Pressure

Re [-] Reynold’s number

sl [m s-1] Lam. burning velocity

T [K] Temperature

V [m3] Volume

Greek Characters

α [m2 s-1] Thermal diffusivity

Δ [-] Difference

η [-] Efficiency

η [Pa s] Dynamic viscosity

ϕ [-] Equivalence ratio

κ [-] Isentropic exponent

μ [-] Mass flow ratio ejector

Ψ [-] Void fraction catalyst

ρ [kg m-3] Density

τ [s] Time
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ζ [-] Friction coefficient

Subscripts

0 Reference methane case

a Air

amb Ambient

c Compressor

cc Combustion chamber

chem Chemical

comp Compression

dif Diffuser

eg Exhaust gas

exp Expansion

f Fuel

fl Full load

fr Friction

in Inlet

inj Injection

l laminar

m Mixture/Mixing

N Nozzle

O Oxidizer

p Pellet

pol Polytropic

s Steam

res Residence (fluid dynamic)
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Appendix A. Model parameters for the gas turbine and the reformer.

Parameter Value

Pressure ratio 20

Mass flow air (full load) 583 kg·s-1

Mass flow air (part load no ATR) 408 kg·s-1

Mass flow NG (full load) 17 kg·s-1

Mass flow NG (part load no ATR) 11.9 kg·s-1

Mass flow NG: Syngas generator (100%) 9.4 kg·s-1

Number of combustors 24

Equivalence ratio syngas combustion 0.33

Pol. efficiency compressor (full load) 0.9

Pol. efficiency turbine (full load) 0.95

Air/C ratio syngas generator 2.5 mol·mol-1

H2O/C ratio syngas generator 2.5 mol·mol-1

Volume catalytic reactor (per combustor) 0.1 m3

Length catalytic reactor (per combustor) 1.05 m

Diameter cat. reactor (per combustor) 0.35 m

Residence-time catalytic reactor 0.2 s

Steam pressure (full load) 120 × 105 Pa

Steam temperature (full load) 813 K

Ambient pressure 1.0 × 105 Pa

Ambient temperature 293 K

Condenser pressure 5.0 × 105 Pa

Condenser temperature 300 K

Pol. efficiency nozzle 0.95

Pol. efficiency inlet 0.9

Pol. efficiency diffuser 0.82

Dimensionless friction 0.01
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Appendix B. Decrease of thermal power by autothermal reforming.

Mass flow of methane in part load regime (IGV, fuel reduction):
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Mass flow of syngas to the reformer in part load regime (IGV, fuel reduction):
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The stoichiometric air to syngas mass flow:
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This leads to a natural gas mass flow to be reformed:

m m kg s˙ ˙
1

1 2.5 2.5
9.4 /M

M
M
M

CH4, Ref Syn
Air

CH

H O

CH4

2

4

=

⎛

⎝

⎜
⎜
⎜ + +

⎞

⎠

⎟
⎟
⎟
=

The decrease in thermal power is thus:
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